
Hardware Hacking 101

Christopher Scheuring

37C3 – Lightning-Talk

/whoami

● Christopher „ChrisS“ (Scheuring) <chris+ccc@aucmail.de>
– Hacker, Security Researcher & Analyst
– Offiziell Security Experte (IT/OT/Embedded) und freiberuflicher Dozent (DHBW

Mosbach und Karlsruhe)

● Mehr auf der Offensive-Seite… mit starkem Fokus auf Secure Development und Design
– Hauptfokus: IoT / OT+ICS / Embedded / Multi-Tier-Umgebungen / Netzwerk

– Ebenso Automotive, Mobile und SDR

Ziele und Motivation
● Das ganze ist als Idee für eine IT-Security Vorlesung an der DHBW entstanden

– Zielgruppe: Informatiker, Angewandte Informatik, Embedded Entwickler

● „Einfaches“ Erkennen von Schnittstellen und Schwachstellen – daher einfach gehalten!

– Hardware-Design

– Software-Implementierung

● Warum?

– Aus Security-Sicht muss auch Hardware betrachtet werden (neben phy. Zugriff...)

– Schlechtes Software-Design dazu kann zu erfolgreichem Hack führen
● Race-Conditions, Fehler im Exception-Handling, versteckte Funktionen...

Wieso ein Hardware Hacking 101?

● Embedded und IoT Hardware wird immer günstiger und einfach zu Programmieren
– (Meist) kein Assembler notwendig - Programmierung in LUA, MicroPython, C/C++
– Arduino, ESP usw.

● Kaum jemand macht sich Gedanken über Security
– Oder: Viele Entwickler denken, dass ja keiner der Hardware öffnet und/oder ist ja nur

ein einfaches Stück Hardware für eine dedizierte Anwendungen…

● Die Hacking-Hardware ist teuer -.- (es war einmal...)

● Was kann schon schief gehen – ist doch verklebt oder sogar vergossen ;-)

„How to“: Öffnen von Dingen :-)

Gummihammer: Sehr zuverlässig bei
geklebten Gehäusen - und richtet
(meist) wenig Schaden an :-)

Wenn der Gummihammer nicht funktioniert
- dann geht es mit ein wenig “Gewalt” aka
Mini-Flex / Puksäge / Mini-Fräse...

Für die ganz widerspenstigen Dinge:

Am Ende geht es um eine Platine :-)

Wo Kabel angelötet werden können...

Firmware usw. ausgelesen werden kann...

Um z.B. an Credentials zu gelangen...

Oder die Funktion zu verstehen…

Oder eigene Firmware aufzuspielen...

Die Hardware

Das Test-Board und seine Komponenten

“Flash”
Speicher (SPI)

Taster

ESP32
WROOM-32

4x4 Key-
Pad

Analoger
Licht-Sensor

Digitaler
Sensor (I2C)

UART/TTY
nur TX-Data

Das Test-Board und seine Komponenten

Jumper und Pin-Header dienen:

 - zum besseren Zugriff zum Messen und analysieren der Signale

 - zur Simulation der Unterbrechung von CLK, CS, Data-Lines usw.

Pin-Header
mit Jumper:

SPI-Bus
Vcc

GND Pin-Header
mit Jumper

I2C-Bus
Vcc

GND

Keine Funktion
nur „Physical
Security“ ;-)

Die Challenges

„How to” Multimeter und Co.

Hardware- und Funktionsanalyse

● Systematische Analyse der Funktion der Anwendung und Hardware

● Fragen
– Welches Verhalten kann beim Ziehen einzelner Jumper identifiziert werden?
– Welche Funktionen haben die verschiedenen Sensoren, Taster, Pin-Headers usw.?
– Gibt es Race-Conditions, die zu unerwartetem Fehlverhalten führen?
– Gibt es versteckte Funktionen?

● Debug- und Konsolenausgaben analysieren

● Pläne:
– Re-Design für flexibles PCB mit einfacher Austausch von Komponenten
– Neue Challenges - irgendwann finden die Studies bestimmt mein Gitea ;-)

● Details zur Hardware, Sourcecode, mehr Doku, Übungen usw:
– https://gitfoo.0x17sec.de/DHBW-Stuff/hw-hacking-101
– soweit möglich Unter GPL und CC veröffentlicht

● Oder direkt an mich ;-)
– chris+ccc@aucmail.de
– @0x4045494650@chaos.social :: @0x4045494650

Ausblick / Wo finde ich mehr dazu?

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14

