
Firmware und Hardware
Aalyse

Basics

Firmware Analyse

● Umfasst die Analyse jeglicher Daten wie z.B. FW-Images, Disk-Images, Flash-Dumps
etc.

● Der Aufbau ist nicht einheitlich und teilweise verschlüsselt oder durch verschiedenen
Methoden verschleiert.

● Meist ist der Vorgang nahe an einer forensischen Analyse - nur ohne den ganzen
prozeduralen overhead wie Dokumentation, 4-Augen-Prinzip, Ablaufprotokolle usw.
○ Nichtsdestotrotz sollte sorgfältig und mit einer Kopie des Originals gearbeitet werden.

● Tools:
○ Hexeditor, GNU file, GNU strings, binwalk, foremost usw.

FritzBox FW-Image

1. Schritt: Ermitteln des Datei-Types

$ file FRITZ.Box_Fon_WLAN_7170.29.04.88.image
FRITZ.Box_Fon_WLAN_7170.29.04.88.image: POSIX tar archive (GNU)

2. Schritt: Entpacken des FW-Images mit Hilfe des tar-Befehls:
$ tar -xvf FRITZ.Box_Fon_WLAN_7170.29.04.88.image

FritzBox FW-Image

3. Schritt: Analyse der entpackten Daten (kleine Auswahl):

$ file chksum
chksum: ELF 32-bit LSB executable, MIPS, MIPS32 version 1 (SYSV), statically linked, stripped
$ file install
install: POSIX shell script, ISO-8859 text executable
$ file regelex
regelex: ELF 32-bit LSB executable, MIPS, MIPS32 version 1 (SYSV), statically linked, stripped
$ file signature
signature: data
$ file tmp/kernel.image
tmp/kernel.image: data

FritzBox FW-Image

● Manchmal bringt binwalk keinen Erfolg:

$ binwalk kernel.image
DECIMAL HEXADECIMAL DESCRIPTION

● Problem: AVM Images haben einen sogenannten NMI vector, der entfernt werden muss.
○ Details siehe https://github.com/Freetz/freetz/blob/master/tools/remove-nmi-vector

● Sobald dieser entfernt wurde, kann mit unsquashfs das kernel.image entpackt werden.
○ Am einfachsten ist es eine entsprechende Freetz-Umgebung einzurichten und damit zu arbeiten.

● Wer interesse daran hat, kann dies gerne als Selbststudium weiter führen ;-)
○ Mind. Tool-Set von freetz, wenn man nicht die ganze freetz-Toolchain installieren möchte:

remove-nmi-vector + freetz_bin_functions und SFK - The Swiss File Knife Multi Function Tool

https://github.com/Freetz/freetz/blob/master/tools/remove-nmi-vector

Zugriff auf Hardware

● Oft findet man keine Firmware zum herunterladen oder möchte ein System direkt
auf der Hardware analysieren

● Strike, wenn eine Serielle Konsole (UART) auf dem System verfügbar ist - was sehr
oft vorkommt :-)

● Evtl. ist auch JTAG (Debug- und Programmier-Schnittstelle) vorhanden
○ geht auch, meist benötigt man aber weitere Tools aus der Build-Chain des Prozessors etc.

um z.B. auf den Flash zugreifen zu können.

● Manche Systeme nutzen einen Serielle Schnittstelle, die auch zum Programmieren
genutzt werden kann, wie z.B. Arduinio-, ESP32- und ES8266-Boards.

● Wenn alle Stricke reißen, muss man direkt an den Speicher ran - was sehr
aufwendig werden kann.

UART bzw. Serielle Schnittstelle

● UART => Universal Asynchronous Receiver Transmitter
● “Eine UART-Schnittstelle dient zum Senden und Empfangen von Daten über eine

Datenleitung und bildet den Standard der seriellen Schnittstellen”
○ aus Wikipedia - Details siehe

https://de.wikipedia.org/wiki/Universal_Asynchronous_Receiver_Transmitter

● Früher eine weit Verbreitete Schnittstelle bei PC und anderen Computersystemen
zum Datenaustausch (RS-232 oder RS-422)
○ Direkt über sog. Null-Modem-Kabel oder über Modems undTelefonleitung

● Andere weit verbreitete Serielle Schnittstellen:
○ CAN-BUS, Ethernet, RS-485 usw.

● Weiterführende Infos:
https://de.wikipedia.org/wiki/Serielle_Schnittstelle

https://de.wikipedia.org/wiki/Universal_Asynchronous_Receiver_Transmitter
https://de.wikipedia.org/wiki/Serielle_Schnittstelle

UART auf Platinen / Embedded Geräten

● Meist ist keine Sub-D Stecker wie die RS-232 bei einem PC verfügbar
● Wenn man Glück hat existiert ein Pfostenstecker oder zumindest einen

entsprechende Vorsehung auf der Platine
● Ansonsten muss man die ICs auf der Platine analysieren und ggfls. Kabel direkt an

die Pins der ICs oder andere taktisch gut gelegene Stellen auf
der Platine anlöten.

UART auf Platinen / Embedded Geräten

UART auf Platinen / Embedded Geräten

● Mit das wichtigste Tool für den UART Zugriff sind entsprechende Adapter
● RS-232 arbeitet mit mind +/-12 V => daher kein USB-TTL Adapter nutzen!
● Ansonsten sollte man auf darauf achten, mit welchen Pegel gearbeitet wird.

○ TTL Standard nutzt 5,0 V
○ Neuere Systeme nutzen oft 3,3 V oder sogar 1,8 V
○ Daher: Eine zu hohe Spannung für TX (transmit data) kann den UART-Anschluss auf dem

System oder des Adapters zerstören.

Was ist, wenn ich das Pin-Layout nicht kenne?

● Mit etwas Glück findet man zu den meisten Systemen eine Info über das Pin-Layout
der UART Schnittstelle - Google und Co. sind dein Freund.

● Ansonsten muss man die Pins durchtesten:
○ Identifikation der Ground-Pins
○ Spannungswerte an den Pins können hilfreich sein (TTL UART hat meistn zwischen 2-5 V

Spannung anliegen)
○ Ggfls. der Widerstandswert der einzelnen Pins gegen Ground (TTL Schnittstellen nutzen

meist Pull-Up oder -Down Widerstände)
○ Logic-Analyse und/oder Oszilloskop sind nützlich um TX seitens des Microcontroller zu finden

Messung der Spannung mit Multimeter

Analyse des Signals mit Oszilloskop

Analyse des Signals mit Logic-Analyser

● Da ein Oszilloskop nicht gerade günstig ist, bietet sich die kostengünstige Version
Spannungsmessung und “15,- Euro” 24 MHz Logic-Analyser an (China Saleae Fake)
an.

● Unter Linux kann dieser Logic-Analyser mit Hilfe der Sigrok-Tools und PulseView
einfach genutzt werden
○ Sigrok-cli: https://sigrok.org/wiki/Sigrok-cli
○ PulseView (GUI): https://sigrok.org/wiki/PulseView

https://sigrok.org/wiki/Sigrok-cli
https://sigrok.org/wiki/PulseView

PulseView und Serielle Schnittstelle EasyBox

● Auf der Platine ist ein Pin-Header vorhanden, zu dem keine Infos bekannt sind.
● Mit Hilfe eines Durchgangsprüfer und Spannungsmesser konnte GND und 4 Pins mit

3,3 V festgestellt werden.
● Zur weiteren Analyse wird ein Logic-Analyser

mit GND und den vier übrigen PINs verbunden.
● Da unklar ist, mit welcher Geschwindigkeit

die Schnittstelle arbeitet, muss eine
ausreichend hohe Abtastrate genutzt werden.

● Nyquist-Shannon-Abtasttheorem beachten!

PulseView und Serielle Schnittstelle EasyBox

● Mit Hilfe von PulseView können nun
die Logikpegel analysiert werden.

● Nur der Kanal D1 liefert kontinuierlich
Daten. Das ist mit hoher
Wahrscheinlichkeit ein TX-Ausgang

● Die Pulslänge (high+low = 2 bit)
beträgt ca. 17,33 µS
=> für die Baudrate muss dieser
Wert noch durch 2 geteilt werden:
8,66 µS (115,384837 kHz) was
115.200 bit/s entspricht.

PulseView und Serielle Schnittstelle EasyBox

● Mit Hilfe der Protokoll-Decoder von PulseView kann das Signal als UART und
korrekten Baudrate decodiert werden:

Ergebnis: “...ROM VER: 1.0.3...CFG…”

PulseView und Serielle Schnittstelle EasyBox

● Weitere Information mit Hilfe des Logic-Analysers:
○ Neben dem kontinuierlichen Signal auf Kanal D1 ist ein konstanter Pegelanstieg auf Kanal D2

zu erkennen.
Dies lässt auf den möglichen RX-Eingang schließen.

○ Auf den anderen Kanälen D0 und D3 sind keinen Pegeländerungen zu erkennen

PulseView und Serielle Schnittstelle EasyBox

● Mit Hilfe des sigrok-cli Tools und der Sigrok-Session Datei aus PulseView kann die komplette Session als UART nach
ASCII decodiert und ausgegeben werden:
ROM VER: 1.0.3
CFG 01
Readï¿½
ROM VER: 1.0.3
CFG 01
Read EEPROMX
 X
==
Wireless ADSL Gateway DANUBE Loader V1.00.01 build Sep 24 2008 10:11:06
 Arcadyan Technology Corporation
==

Logic-Analyser - Luxusversion

Übung PulseView

Übung PulseView

● Gehen sie in Moodle zur Aufgabe “PulseView / Sigrok Analyse” und laden Sie die
Sigrok Session Datei herunter.

● Analysieren Sie die Datei in PulseView und nutzen Sie den UART Decoder
● Nutzen sie sigrok-cli um den Inhalt der Datei so zu decodieren, dass die UART-

Kommunikation im Klartext angezeigt werden kann.
Hinweis: Nutzen SIe die entsprechenden Funktionen und Parameter von sigrok-cli (
https://sigrok.org/wiki/Sigrok-cli)

https://sigrok.org/wiki/Sigrok-cli

Übung PulseView

● Welche Einstellungen müssen Sie für den UART Decode wählen, um das Serielle Signal
fehlerfrei decodiert angezeigt zu bekommen?
○ Die Baudrate muss auf 115200 eingestellt werden.

● Mit welchen sigrok-CLI Parameter konnten sie das Signal decodiert in der Konsole
darstellen?
○ $ sigrok-cli -i Analyse_Pin-Header_Logic-8ch.sr -P uart:baudrate=115200:format=ascii:tx=D1 -B

uart=tx
führt zum gewünschten Ergebnis.

Übung Bus-Systeme: I²C und
SPI

I²C - Zum Einstieg

I²C - Zum Einstieg

● I²C oder I2C (Inter-Integrated Circuit) ist ein 1982 entwickelter serieller Datenbus mit 2
Signalleitungen

○ Taktleitung: SCL = Serial Clock
○ Datenleitung: SDA = Serial Data

● Die einzelnen Teilnehmer werden im Master/Slave Modus über Adressen angesprochen.
● Folgende Geschwindigkeiten werden unterstützt:

○ 0,1 (Standard), 0,4, 1,0, 2,0, 3,4 und 5.0 (Ultra Fast Mode) MBit/s

● Weitere Infos und Details zum Protokoll unter https://de.wikipedia.org/wiki/I%C2%B2C

https://de.wikipedia.org/wiki/I%C2%B2C
https://de.wikipedia.org/wiki/I%C2%B2C

I²C Übung

● Gehen sie in Moodle zur Aufgabe “Daten Bus I2C” und laden Sie das Archiv mit den
Übungsdaten herunter.
○ Inhalt: zwei Sigrok-Sessiondateien und ein PDF (Datasheet)

● Öffnen Sie als erste i2c_sniff.sr in Pulseview und nutzen Sie den I²C Decoder zum
analysieren der Daten.

● Sie können auch zusätzlich die Daten mit sigrok-cli extrahieren - siehe UART-Übung
(nur diesmal mit dem I2C Decoder).

● Fragen:
○ Woran lässt sich der SCL (Clock) eindeutig vom SDA (Datensignal) unterscheiden?
○ Welche Werte wurden übermittelt? (Siehe Funktion der I²C Teilnehmers aus Datenblatt)

● Öffnen Sie als zweites i2c_sniff_2.sr
○ Was fällt auf und was ist Ursache dieses Verhaltens?

I²C Übung - Lösung

Anzeige “i2c_sniff.sr” in Pulseview mit I²C Decoder:

Sigrok-cli Kommandos:
$ sigrok-cli -i i2c_sniff.sr -P i2c:scl=D0:sda=D1 | less oder
$ sigrok-cli -i i2c_sniff.sr -P i2c:scl=D0:sda=D1 > i2c_sniff.sigrok_out_1.txt
$ sigrok-cli -i i2c_sniff.sr -P i2c:scl=D0:sda=D1 -B i2c | hexdump -C oder
$ sigrok-cli -i i2c_sniff.sr -P i2c:scl=D0:sda=D1 -B i2c > i2c_sniff.sigrok_out_2.raw

I²C Übung - Lösung

● Woran lässt sich der SCL (Clock) eindeutig vom SDA (Datensignal) unterscheiden?
○ SCL ist ein 8-Takte langes und regelmäßiges Signal. Es sind immer kleine Pausen zwischen den 8

Takten zu erkennen. SDA variiert bzgl. der abgefragten und empfangenen Daten.

● Welche Werte wurden übermittelt? (Siehe Funktion der I²C Teilnehmers aus Datenblatt)
○ Der Teilnehmer ist ein BH1750 Lichtsensor und gibt die aktuellen Lichtwerte in LUX aus (folgen

immer nach Address read),
○ Es wird der Modus 0x10 (0001000b) genutzt (H-Resolution Mode)

● Öffnen Sie als zweites i2c_sniff_2.sr / Was fällt auf und was ist Ursache dieses Verhaltens?
○ Alle Werte sind identisch (0x03) - scheinbar änderten sich diese nie (was unrealistisch ist, außer bei

absoluter Dunkelheit oder maximal messbare Helligkeit.
○ Die Abfrage der Werte erfolgt alle 100 ms - da der Sensor H-Resolution Mode nutzt (120-180 ms

timing), führt dies zu einem Timing-Fehler und somit wird immer der zuerst ermittelte Wert
ausgelesen.

I²C Übung - Lösung

Abstand zwischen dem Datenabruf

I2c_sniff.sr (200 ms - OK) i2c_sniff_2.sr (100 ms - NOK)

SPI - Daten Lesen und
Schreiben

SPI Daten lesen und schreiben - Übung

● Gehen sie in Moodle zur Aufgabe “SPI Daten lesen und schreiben” und laden Sie das
Archiv mit den Übungsdaten herunter.
○ Inhalt: drei Sigrok-Session-Dateien und ein Dump des Flash-Inhalts

● Öffnen Sie Session-Dateien in Pulseview und nutzen Sie den SPI Decoder zum analysieren
der Daten (MOSI, MISO, CLK und CS sind bereits vorgegeben)
Tipp: Von hinten nach vorne analysieren.
○ Was ist der Unterschied zwischen MOSI und MISO? Wie könnte man diese identifizieren?
○ Was bedeutet das beim Lesen und beim Schreiben in den Flash?
○ Was ist der Overhead neben den eigentlichen Roh-Daten beim Lesen und Schreiben?
○ Warum ist dieser Overhead im Dump der Flashspeichers nicht vorhanden?
○ In welchem Abstand liegen die Daten im Flaschspeicher?

● Sie können auch zusätzlich die Daten mit sigrok-cli extrahieren - siehe UART-Übung (nur
diesmal mit dem SPI Decoder).

● Nutzen Sie zur Analyse des Flashspeicher-Dumps einen Hex-Viewer/Editor.

SPI Daten lesen - Lösung (sd-card_raw_read.sr)

SPI Daten schreiben - Lösung (sd-card_raw_write_01.sr)

SPI Daten schreiben - Lösung (sd-card_raw_write_02.sr)

SPI Daten lesen und schreiben - Lösung

Was ist der Unterschied zwischen MOSI und MISO?

● MOSI => MasterOutSlaveIn: Alle Daten, die vom SPI Master an den SPI Slave gehen.
● MISO => MasterInSlaveOut: Alle Daten, die vom SPI Slave an den SPI Master gehen.

Was bedeutet das beim Lesen und beim Schreiben in den Flash?

● Die Richtung und damit Nutzung der MOSI/MISO Datenleitung wird anders genutzt, um die
Daten auf den Flasch zu speichern bzw. vom Flash zu lesen.

Was ist der Overhead neben den eigentlichen Rohdaten beim Lesen und Schreiben?

● Das sind einmal die Initialisierungsdaten für den Flash-Zugriff, und die Adressierung der
Daten zu lesen- und schreibenden Daten.

SPI Daten lesen und schreiben - Lösung

Warum ist dieser Overhead im Dump der Flashspeichers nicht vorhanden?

● Die Daten sind direkt in eindeutigen Blöcken im Flaschspeicher abgelegt

In welchem Abstand liegen die Daten im Flaschspeicher?

● 512 kb => Damit ist ein Datenblock 512 kb groß

sigrok-cli Befehle:

● $ sigrok-cli -i sd-card_raw_read.sr -P
spi:wordsize=8:miso=MISO:mosi=MOSI:clk=CLK:cs=CS -B spi=miso | hexdump -C

● $ sigrok-cli -i sd-card_raw_read.sr -P
spi:wordsize=8:miso=MISO:mosi=MOSI:clk=CLK:cs=CS -B spi=mosi | hexdump -C

SPI Daten lesen und schreiben - Lösung Zusatz

Wenn MOSI, MISO, CLK und CS unbekannt sind, kann man diese recht einfach erkennen

CLK:

● Ist immer so lange aktiv, wie der Zugriff aktiv
Ist - siehe rote Umrandung.

● Zusätzlich ist das Signal kontinuierlich - mit
kurzen Pausen.

● Damit kann auch die Word Size abgelesen
werden - hier im Beispiel 8 bit.

SPI Daten lesen und schreiben - Lösung Zusatz

CS (Chip Select):

● CS ist entsprechend aktiv bei der
Datenübertragung (active low)

● Und pausiert bei längeren CLK
Pausen zwischen dem Daten-
austausch (siehe roter Kasten)

SPI Daten lesen und schreiben - Lösung Zusatz

MISO und MOSI:

● Muss aus dem Kontext evaluiert werden - da meist asynchron zugegriffen wird, kann
es an den übertragenen Datenmengen abgeleitet werden ;-)

Lesender Zugriff: MIS0 aktiver Schreibender Zugriff: MOSI
aktiver

SPI - SD Card Zugriff

SPI SD-Card Zugriff - Übung

In einem System ist eine fest verbaute SD-Card, die für die Datenspeicherung genutzt
wird und über SPI angesprochen wird.

● Gehen sie in Moodle zur Aufgabe “SPI SD-Card Zugriff” und laden Sie das Archiv mit
den Übungsdaten herunter.
○ Inhalt: eine Sigrok-Session-Dateien und eine Konsolenausgabe.

● Öffnen Sie Session-Dateien in Pulseview und nutzen Sie den SPI Decoder zum
analysieren der Daten (MOSI, MISO, CLK und CS sind bereits vorgegeben)

● Nutzen Sie auf jeden Fall für die Analyse der Daten die sigrok-cli mit dem SPI
Decoder - die reine Analyse in PulseView ist sehr mühsam.

SPI SD-Card Zugriff - Übung

Fragen:

● Was ist auffällig bei der Analyse der Sigrok-Session Datei?
● Welches Dateisystem auf der SD-Karte wird genutzt?
● Sind die drei in der Konsole aufgelisteten Daten die einzigen Daten auf der SD-Card?

○ Wenn ja, wie heist die Datei und können Sie den Inhalt ermitteln?

● Welche Inhalte können Sie aus der Sigrok-Session Datei extrahieren?

SPI SD-Card Zugriff - Lösung

Was ist auffällig bei der Analyse der Sigrok-Session Datei?

● Es sind sehr viel mehr Daten zwischen dem System und der SD-Card ausgetauscht
worden.

● Der Overhead besteht aus mehr Informationen, als beim direkten SPI Zugriff - was
auf ein Dateisystemzugriff zurückzuführen ist,

Welches Dateisystem auf der SD-Karte wird genutzt?

● FAT32
Mit Hilfe sigrok-cli z.B. die MISO Daten extrahieren - folgender Eintrag ist zu finden:
00002010 00 80 00 29 f8 4e 16 90 4e 4f 20 4e 41 4d 45 20 |...).N..NO NAME |
00002020 20 20 20 46 41 54 33 32 20 20 20 00 00 00 00 00 | FAT32 |

SPI SD-Card Zugriff - Lösung

Sind die drei in der Konsole aufgelisteten Daten die einzigen Daten auf der SD-Card?

● Nein, es ist noch eine Datei mit dem Namen “ONFIG TXT” vorhanden - siehe MISO
Daten:
00002270 a1 b7 52 04 00 4f 02 00 00 e5 63 00 6f 00 6e 00 |..R..O....c.o.n.|
00002280 66 00 69 00 0f 00 39 67 00 2e 00 74 00 78 00 74 |f.i...9g...t.x.t|
00002290 00 00 00 00 00 ff ff ff ff e5 4f 4e 46 49 47 20 |..........ONFIG |
000022a0 20 54 58 54 20 00 31 fb 6d b8 52 b8 52 00 00 fb | TXT .1.m.R.R...|

● Auf den Inhalt der Datei kann über die Sigrok-Session nicht zugegriffen werden, Es
handelts sich um eine gelöschte Datei, die in der FAT als gelöscht markiert wurde. Ein
Flash-Dump könnte ggfl. den Inhalt der Datei rekonstruieren, falls diese noch nicht
überschrieben wurde.

SPI SD-Card Zugriff - Lösung

Welche Inhalte können Sie aus der Sigrok-Session Datei extrahieren?

● Es können über die MISO Daten die Inhalte der “config.cnf” und “logfile.log”
extrahiert werden:
config.cnf: [CONFIG]

version=1.1

[NETWORK]
ip=10.12.13.121

netmask=255.255.255.0
gateway=10.12.13.1
logserver=10.12.12.10

[LOGIN]
user=loguser
passwd=5V:!(-

w<XEHV

logfile.log: START-LOG-FILE

SPI SD-Card Zugriff - Lösung

Welche Inhalte können Sie aus der Sigrok-Session Datei extrahieren?

● Es können über die MOSI Daten die Inhalte extrahiert werden, die in “logfile.log”
geschrieben wurden:

logfile.log: START-LOG-FILE
log::2021-05-12--12-21-42::readEntrySuccess
log::2021-05-12--12-21-43::readEntrySensorSuccess
log::2021-05-12--12-21-44::readEntrySensorValue::24.2
log::2021-05-12--12-21-45::readEntrySuccess
log::2021-05-12--12-21-46::readEntrySensorSuccess
log::2021-05-12--12-21-47::readEntrySensorValue::23.9

SPI SD-Card Zugriff - Lösung

Sigrok-cli Befehle zum extrahieren der Daten:

● MOSI Daten (Daten, die auf die SD-Card geschrieben werden - bzw. Befehle zur
Karte/Slave):
$ sigrok-cli -i sd-card-spi_config.sr -P spi:wordsize=8:miso=MISO:mosi=MOSI:clk=CLK:cs=CS -B
spi=mosi | hexdump -C

● MISO Daten (Daten, die von der SD-Card gelesen werden):
$ sigrok-cli -i sd-card-spi_config.sr -P spi:wordsize=8:miso=MISO:mosi=MOSI:clk=CLK:cs=CS -B
spi=miso | hexdump -C

Alternativ können die Ausgaben auch in einen Datei mit Hilfe von ”> <dateiname>” anstatt “|
hexdump -C” umgeleitet werden, und so von einem beliebigen anderen Programm geöffnet
werden.

FritzBox - Direkter Zugang
über Serielle Konsole

FritzBox und die Serielle Schnittstelle

● Die meisten FritzBoxen haben eine
aktive Serielle Schnittstelle vorhanden,
über die auf den Bootloader als auf
ohne weiter Authentifizierung auf die
OS-Konsole zugegriffen werden kann.

● Über diesen Zugang kann man sehr tief
in das System eindringen und auf
unterschiedliche Daten zugreifen -
ohne das GUI-Passwort kennen zu
müssen.

FritzBox und die Serielle Schnittstelle

● Der Zugriff erfolgt per USB TTL Adapter und einem beliebigen Terminal-Programm wie z.B. mincom unter Linux.
○ 38400 baud, 8N1

(AVM) EVA Revision: 1.393 Version: 1393
(C) Copyright 2005 AVM Date: Nov 26 2007 Time: 14:05:07 (0) 2 0x0-0x41F

[FLASH:] SPANSION Top-MirrorBit-Flash 8MB 32 Bytes WriteBuffer
[FLASH:](Eraseregion [0] 127 sectors a 64kB)
[FLASH:](Eraseregion [1] 8 sectors a 8kB)
[SYSTEM:] OHIO on 211MHz/125MHz

Eva_AVM >AVM decompress Kernel:
....................executeProgram on 0x941DA000
[ohio_pre_init] System Clk = 62500000 Hz

LINUX started...

DEMO FritzBox UART Zugriff

Übung FritzBox

FritzBox - Übung

Gehen sie in Moodle zur Aufgabe “FritzBox Dump” und laden Sie die Sigrok Session Datei
herunter.

● Aufgabe: Extrahieren Sie die Inhalte des Flash-Speichers und die Kopie des Dateisystems.
○ Welche Daten sind in welcher Form zu finden?
○ Können Credentials in klartext oder verschlüsselt extrahiert werden?

● Die Lösungen werden wir gemeinsam Diskutieren.

Hausarbeit Image Analyse
Ein kleiner Ausflug in die Forensik

Image-Forensik - Übung

Gehen sie in Moodle zur Aufgabe “Image-Forensik” und laden Sie das Archiv herunter und entpacken
Sie diese in ein separates Verzeichnis.

Nutzen SIe für die Analyse der drei Images “binwalk” und “foremost” (beide Tools sind unter Kali-
Linux vorhanden). Sie können gerne auch andere Forensik-Tool einsetzen.

● Was sind die Unterschiede bei der Extraktion der Daten mit den beiden Tools?
● Welche Daten können aus den Image cf_disk_fat32_part_data_delete+wipe.img und
cf_disk_fat32_part_data_after_new_format.img wieder hergestellt werden?

● Was können Sie zur Sicherheit zu folgenden Befehlen/Aktionen aussagen im Hinblick zu den
beiden Images?
○ Einsatz von rm (Linux) bzw. delete (Windows) von Dateien auf einem FAT-Dateisystem.
○ Einsatz von format als FAT32 Dateisystem (Unter Linux als auch Windows).
○ Einsatz von wipe (linux) mit und ohne der Option “-f”.

Image-Forensik - Lösung

Folgt zur letzten Vorlesung.

Fazit
oder was hat das jetzt alle mit
IT/Cyber Security zu tun???

All about Safety - äh Security!

● Hacken von Hardware ist mittlerweile mit kleinem Geld möglich - also unter 1000,- EUR
○ und mit der Minimal-Austattung für um 100,- EUR (China Logic Analyser, Arduino, Multimeter, Lötkolben, TTY

USB…)

● Security war lange Zeit nicht im Fokus - haupt Ausreden:
○ Das Equipment dafür ist zu teuer und das können ja nur Profis (ja - war mal so vor 15/20 Jahren).
○ Traut sich eh keine ran, weil ist ja in einem geschlossenen Gehäuse - kein Kommentar ;-)
○ Man muss ein Elektrotechnik Studium dafür machen, Assembler Code können und Mikrocontroller

Programmieren können - ist von Vorteil… aber schon lange nicht mehr notwendig.
○ Öffnen des Gerätes ist $weil-überhaupt:

■ Garantieverlust (die endete auch irgendwann - oder billig genug)
■ Unmöglich, weil verklebt, “sonder” Schrauben, vernietet, vergossen - ja, das machts ätzend, usw.
■ Verboten, weil Garantieverlust (nun ja…), AGB/Nutzungsbedingungen (dann halt in der Bucht gebraucht

kaufen), verplombt/versiegelt (nix ist unmöglich)
■ Kann es nur an 230/400V betreiben, und das ist dann ja Lebensgefährlich, wenn man es öffnet und daran

bastel. Ja, 230 V können einen töten! Aber es gibt Trenntrafos und galvanische Trennung der
Schnittstellen...

IT/Cyber Security so wichtig wie
noch auch im Embedded Umfeld!

Keine IT/Cyber Security im Embedded Umfeld

● Die genutzten Schnittstellen sind öffentlich verfügbar - selten proprietäre Bus-System im
Einsatz (Kostenfaktor) und Sicherheit durch Verschleierung hilft nur bedingt.

● Bit-Flip (7 bit ASCII z.B. mit 1xxx xxxx anstatt 0xxx xxxx übertragen) erkannt man einfach
- und kann Bit-Flip einfach umrechnen.

● Kaum verschlüsselter Datenaustausch über BUS-Schnittstellen (SPI, I²C, UART, RS485 etc.)
○ Begründung: Ist doch nur ein interner Bus - und da kommt ja niemand dran…
○ Wenn gut umgesetzt, dann sind die Datenleitungen zwischen Multilayern auf der Platine versteckt.

Das macht es schwierig ran zu kommen - und auch sehr schwer beim Platinenlayout und Routin.

● Daten liegen meist auch ungeschützt im Flash-Speicher des Systems
○ Bei SPI, I²C z.B. kommt man meist recht leicht an den Baustein ran und kann diesen direkt auslesen.
○ Einsatz von parallel ansprechbaren Flash-Speicher benötigt meist spezielle Hardware zum Auslesen!

■ Leider ist meist der OS-Zugriff nicht wirklich geschützt (FritzBox Beispiel) oder JTAG
verfügbar...

IT/Cyber Security im Embedded Umfeld

Was kann ich besser machen?

Das hängt davon ab, wie schützenswert die Daten in Rest und Transit sind!

● Informationsklassifizierung, Bedrohungsanalyse und Risk Assessment ist notwendig
- und zwar vor dem Design! (Kleine(s) rapid development “Problem” bzw.
Herausforderung ;-)

● Nicht immer anwendbar z.B. im kleinst Mikrocontroller Bereich aus performance
Gründen. Allerdings stellt sich dann die Frage, ob dieser überhaupt für den
Anwendungszweck die geeignete Wahl ist/war.

IT/Cyber Security im Embedded Umfeld

Folgende Mindestanforderungen sollten berücksichtigt werden:

● Bootloader und Console per Passwort schützen
○ Kein Netzwerkboot zulassen! Auch kein Fallback darauf!

● Signaturen nutzen - beim booten und auch beim flaschen
● Verschlüsselung abhängig von der Hardware nutzen (AES128 können die meisten Mikrocontroller on the

fly).
● Sicheres Konzept beim Ablegen von sensiblen Daten im Flash-Speicher erarbeiten und umsetzen.
● Read-Only Flash-Speicher nutzen (entweder als ROM oder über Flags im Flash und Mikrocontroller
● Debug Schnittstellen deaktivieren oder mit Passwort schützen.

○ Keine versteckten Schnittstellen, die über bestimmte Spannungspegel aktiviert werden nutzen - das kann gefuzzt
werden

Bests Friends Gehäuse
öffnen...

Gummihammer

Sehr zuverlässig bei geklebten
Gehäusen - und richtet (meist)
wenig Schaden an :-)

Dremel / Mini-Flex / Puk-Säge

Wenn der Gummihammer nicht
funktioniert - dann geht es mit ein wenig
“Gewalt” ;-)

Und ein paar nützliche
weitere Tools...

Universal-Programmer

Arduinio Uno in Kombination
mit dem AVR ISP Shield.

Sehr günstige Lösung für einen
Programmer mit großer
EEPROM usw. Unterstützung.

Universal-Programmer

Arduinio Uno in Kombination
mit dem AVR ISP Shield.

Sehr günstige Lösung für einen
Programmer mit großer
EEPROM usw. Unterstützung.

Testclips und Adapter

Sammlung verschiedener
Testclips und Adapter um
aufgelötete oder SMD ICs mit
dem Universal-Programmer
oder Logic-Analyzer zu
verbinden.

Jumper-Kabel mit Testhaken

Oft sind Kroko-Klemmen zu
„grob“ – Abhilfe schaffen
Dupont/Jumper-Kabel mit
Testhaken.

JTagulator

Sobald man auf einer Hardware
eine sehr große Anzahl an
unbekannten, möglichen Debug-
und/oder Daten-Schnittstellen
vorfindet, ist die Analyse mit
einem 8 oder 16 Port Logic-
Analyzer oder Osziliskop sehr
Aufwändigt.

Abhilfe schafft hier der Jtagulator,
der bis zu 24 Kanäle parallel
analysieren kann.

Fragen? Diskussion?

	Folie 1
	Basics
	Firmware Analyse
	FritzBox FW-Image
	FritzBox FW-Image
	FritzBox FW-Image
	Zugriff auf Hardware
	UART bzw. Serielle Schnittstelle
	UART auf Platinen / Embedded Geräten
	UART auf Platinen / Embedded Geräten
	UART auf Platinen / Embedded Geräten
	Was ist, wenn ich das Pin-Layout nicht kenne?
	Messung der Spannung mit Multimeter
	Analyse des Signals mit Oszilloskop
	Analyse des Signals mit Logic-Analyser
	PulseView und Serielle Schnittstelle EasyBox
	PulseView und Serielle Schnittstelle EasyBox
	PulseView und Serielle Schnittstelle EasyBox
	PulseView und Serielle Schnittstelle EasyBox
	PulseView und Serielle Schnittstelle EasyBox
	Logic-Analyser - Luxusversion
	Übung PulseView
	Übung PulseView
	Übung PulseView
	Übung Bus-Systeme: I²C und SPI
	I²C - Zum Einstieg
	I²C - Zum Einstieg
	I²C Übung
	I²C Übung - Lösung
	I²C Übung - Lösung
	I²C Übung - Lösung
	SPI - Daten Lesen und Schreiben
	SPI Daten lesen und schreiben - Übung
	SPI Daten lesen - Lösung (sd-card_raw_read.sr)
	SPI Daten schreiben - Lösung (sd-card_raw_write_01.sr)
	SPI Daten schreiben - Lösung (sd-card_raw_write_02.sr)
	SPI Daten lesen und schreiben - Lösung
	SPI Daten lesen und schreiben - Lösung
	SPI Daten lesen und schreiben - Lösung Zusatz
	SPI Daten lesen und schreiben - Lösung Zusatz
	SPI Daten lesen und schreiben - Lösung Zusatz
	SPI - SD Card Zugriff
	SPI SD-Card Zugriff - Übung
	SPI SD-Card Zugriff - Übung
	SPI SD-Card Zugriff - Lösung
	SPI SD-Card Zugriff - Lösung
	SPI SD-Card Zugriff - Lösung
	SPI SD-Card Zugriff - Lösung
	SPI SD-Card Zugriff - Lösung
	FritzBox - Direkter Zugang über Serielle Konsole
	FritzBox und die Serielle Schnittstelle
	FritzBox und die Serielle Schnittstelle
	DEMO FritzBox UART Zugriff
	Übung FritzBox
	FritzBox - Übung
	Hausarbeit Image Analyse Ein kleiner Ausflug in die Forensik
	Image-Forensik - Übung
	Image-Forensik - Lösung
	Folie 59
	All about Safety - äh Security!
	IT/Cyber Security so wichtig wie noch auch im Embedded Umfeld!
	Keine IT/Cyber Security im Embedded Umfeld
	IT/Cyber Security im Embedded Umfeld
	IT/Cyber Security im Embedded Umfeld
	Bests Friends Gehäuse öffnen...
	Gummihammer
	Dremel / Mini-Flex / Puk-Säge
	Folie 68
	Folie 69
	Folie 70
	Folie 71
	Folie 72
	Folie 73
	Fragen? Diskussion?

