
Hardware Hacking 101

Christopher Scheuring

/whoami
● Christopher „Chris“ (Scheuring)

– Hacker, Security Researcher & Analyst

– Offiziell Security Experte (IT/OT/Embedded) und freiberuflicher Dozent (DHBW Mosbach und
Karlsruhe)

● Mehr auf der Offensive-Seite…

– Hauptfokus: IoT / OT+ICS / Embedded / Multi-Tier-Umgebungen / Netzwerk

– Ebenso Automotive, Mobile und SDR

● Kontakt:

– chris@aucmail.de

– @0x4045494650@chaos.social :: @0x4045494650

Warum das Ganze?

Wieso ein Hardware (HW) Hacking 101?
● Embedded und IoT Hardware wird immer günstiger und einfach zu Programmieren

– (Meist) kein Assembler notwendig - Programmierung in LUA, MicroPyhton, C/C++

– Arduino, ESP usw.

● Kaum jemand macht sich Gedanken über Security

– Oder: Viele Entwickler denken, dass ja keiner der HW öffnet und/oder es ist ja nur ein einfaches Stück HW für
eine dedizierte Anwendungen…

● Die Hacking-Hardware ist teuer...

● Was kann schon schief gehen ;-)

Was spricht für mehr
Security?

Gummihammer

Sehr zuverlässig bei geklebten
Gehäusen - und richtet (meist)
wenig Schaden an :-)

Dremel / Mini-Flex / Puk-Säge

Wenn der Gummihammer nicht funktioniert -
dann geht es mit ein wenig “Gewalt” ;-)

Am Ende geht es um eine Platine :-)

Wo Kabel angelötet werden können...

Firmware usw. ausgelesen werden kann...

Um z.B. an Credentials zu gelangen...

Oder die Funktion zu verstehen…

Oder eigene Firmware aufzuspielen...

Die Idee des Test-Boards

Ziele und Motivation (1)

● Das ganze ist als Idee für eine IT-Security Vorlesung an der DHBW entstanden

● Erkennen von Schnittstellen und Schwachstellen

– Hardware-Design

– Software-Implementierung

● Warum?

– Aus Security-Sicht muss auch die HW betrachtet werden

– Schlechtes SW-Design kann zu erfolgreichem Hack führen

Ziele und Motivation (2)

● Umgang mit

– Multimeter

– Oszilloskop

– Logic Analyzer

– $Adapter (TTY, CAN, RS485 etc.)

● Ausnutzen von Schwachstellen / Designfehlern / Hidden Functions

Ziele und Motivation (3)

● Standard-Tools gibt es für kleine Geld und es wird kein Hightech-Equipment benötigt:

– Multimeter => 15,- bis 25,- EUR

– Logic Analyzer => China Saleae 10,- bis 15,- EUR (reicht für das meiste aus)

– $Adapter (TTY, CAN, RS485 etc.), Jumper-Kabel => je 2,- bis 6,- EUR

– Lötkolben – nicht zwingen, aber macht das Leben leichter => 50,- EUR

– Optional: „kleines“ Digital-Oszilloskop => 100,- bis 300,- EUR

● Alles zusammen gibt’s ab ~100,-EUR + 100 EUR für optionales Oszi

Das Test-Board und seine Komponenten

“Flash”
Speicher

Taster

ESP32
WROOM-32

4x4 Key-
Pad

Analoger
Sensor

Digitaler
Sensor

Das Test-Board und seine Komponenten

Pin-Header
mit Jumper

Pin-Header
mit Jumper

Pin-Header
ohne Jumper :-)

ESP Shield
Reset Button

Auffinden von Schnittstellen
und Zugriff darauf

UART usw. auf Platinen / Embedded Geräten

● Meist ist keine Sub-D Stecker wie die RS-232 bei einem PC verfügbar
● Wenn man Glück hat existiert ein Pfostenstecker oder zumindest einen entsprechende Vorsehung

auf der Platine
● Ansonsten muss man die ICs auf der Platine analysieren und ggfls. Kabel direkt an die Pins der ICs

oder andere taktisch gut gelegene Stellen auf
der Platine anlöten.

UART auf Platinen / Embedded Geräten

● Mit das wichtigste Tool für den UART Zugriff sind entsprechende Adapter
● RS-232 arbeitet mit mind +/-12 V => daher kein USB-TTL Adapter nutzen!
● Ansonsten sollte man auf darauf achten, mit welchen Pegel gearbeitet wird.

○ TTL Standard nutzt 5,0 V
○ Neuere Systeme nutzen oft 3,3 V oder sogar 1,8 V
○ Daher: Eine zu hohe Spannung für TX (transmit data) kann den UART-Anschluss auf dem System oder des

Adapters zerstören.

Messung der Spannung mit Multimeter

Analyse des Signals mit Oszilloskop

Analyse des Signals mit Logic-Analyser

● Da ein Oszilloskop nicht gerade günstig ist, bietet sich die kostengünstige Version
Spannungsmessung und “15,- Euro” 24 MHz Logic-Analyser an (China Saleae Fake) an.

● Unter Linux kann dieser Logic-Analyser mit Hilfe der Sigrok-Tools und PulseView einfach genutzt
werden

○ Sigrok-cli: https://sigrok.org/wiki/Sigrok-cli
○ PulseView (GUI): https://sigrok.org/wiki/PulseView

https://sigrok.org/wiki/Sigrok-cli
https://sigrok.org/wiki/PulseView

Analyse des Signals mit Logic-Analyser

Die Challenges

Challenge: HW und Funktionsanalyse

● Ermitteln der Pins und deren Funktion mit Hilfe von

– Multimeter

– Logic-Analyzer => welche Funktion haben die verschiedenen Pins?

● Erstellen Sie sich eine Skizze mit den Pins und deren Funktion/Belegung.

– TTY USB Adapter => Welche Details liefert die Serielle Schnittstelle?

● Welches Verhalten kann beim Ziehen einzelner Jumper identifiziert werden?

● Welche Funktionen haben die verschiedenen Sensoren und Taster?

– Welches Verhalten können Sie erkennen?

HW-Analyse – Pins und deren Funktion

SPI Schnittstelle
Ist auf jeden Fall

wichtig.

I2C
Schnittstelle

UART/TTY
Serielle Schnittstelle

nur TX-Data
Taster

Löst Meldung in
Serieller-Konsole aus

Macht
erstmal nix

HW-Analyse – Pin Belegung (links nach rechts)

1 GND
2 Vcc 5V
3 MISO
4 MOSI
5 SCLK
6 CS

ACHTUNG:
3.3V Pegel

1 Vcc 3.3V
2 GND
3 SCL
4 SDA

3.3V Pegel

1 n.c.
2 TX Data
3 GND
4 GND

3.3V Pegel

X-Ver:

1 GND
2 GND
3 TX Data
4 n.c.

Funktions-Analyse
● SPI Schnittstelle dient zum Datenaustausch zwischen dem ESP und Flash-Speicher (Standard SD-Card

Zugriff auf FAT-Ebene)

● I2C Schnittstelle dient zum Auslesen der BMP180 Sensorwerte (Temperatur, Luftdruck und relative Höhe)

● Werden einzelne Jumper von der SPI und I2C Schnittstelle entfernt, erscheint eine Fehlermeldung in der
Seriellen Konsole.

● Serielle Schnittstelle stellt eine “read-only” Konsole zur Verfügung, die verschiedene Systemzustände
anzeigt.

● Der analoge Sensor ist ein Helligkeitssensor und gibt Werte von 0 (absolut dunkel) bis 4095 (max. hell)
aus.

● Der Taster erzeugt folgende Meldung in der Seriellen Konsole: „Case is open - no Pin entry possible!“

● Der Jumper Header neben dem Taster scheint Funktionslos zu sein, wenn man diesen überbrückt.

Funktions-Analyse Serielle Konsole

● Nach dem anlegen der Betriebsspannung
startet das Systems, es erscheint eine
Begrüßungsmeldung und Details zum
angebunden Flash-Filesystem.

● Danach werden alle 2 Sekunden die
Werte des BMP180 und dem Lichtsensor
ausgegeben.

● Aktionen lösen weitere Meldungen in der
Konsole aus.

Challenge: Key-Pad und die PIN

● Finden Sie einen Weg, um das Key-Pad zu aktivieren.

● Finden Sie einen Weg, um an die PIN zu gelangen.

● Hinweis: Achten Sie auf die Ausgabe der Seriellen Konsole.

– Was können Sie daraus schließen, um an die PIN zu gelangen?

– Denke Sie auch an die Übungen zur Analyse von über SPI übertragene Daten.

Key-Pad und die PIN

● Finden Sie einen Weg, um das Key-Pad zu aktivieren.

– Es muss der Taster gedrückt und gleichzeitig muss der Lichtsensor komplett
abgedunkelt werden. Es erscheint die Meldung:

Case is closed :: Start KeyPad activation for 10 seconds.
Enter Pin (Confirm with #-Key):

● Finden Sie einen Weg, um an die PIN zu gelangen.

– Nutzen Sie Pulseview um die SPI Kommunikation mit zu schneiden und extrahieren
Sie mit Hilfe von sigrok-cli die übertragenen Daten.

– Die PIN wird beim starten neu erzeugt und in die Datei .SECRET/.secret abgelegt.

Key-Pad und die PIN – SPI sniffen

500 M Samples +
6 MHz Abtastrate

reichen aus

Den „SD Card (SPI
Mode)“ Decoder

auswählen

Am besten die
Kanäle Beschriften
wie im Pin-Layout

identifiziert.

SPI Analyse der Daten

● Die mit Hilfe von Pulseview aufgezeichneten Daten beim Starten des Systems (am besten warten, bis
mind. 1-2 Sensorwerte in der Konsole angezeigt wurden) in eine Datei zur weiteren Verarbeitung mit
sigrok-cli abspeichern (z.B. Daten_Start_Test-HW.sr).

● Folgende Befehle extrahieren die Klartext Information:

– Daten Senden Flash-Speicher:
$ sigrok-cli -i Daten_Start_Test-HW.sr -P
spi:wordsize=8:miso=MISO:mosi=MOSI:clk=SCLK:cs=CS -B spi=mosi | strings

– Daten Empfangen Flash-Speicher
$ sigrok-cli -i Daten_Start_Test-HW.sr -P
spi:wordsize=8:miso=MISO:mosi=MOSI:clk=SCLK:cs=CS -B spi=miso | strings

– Anstatt | srings kann auch | hexdump -C genutzt werden (zum besseren Vergleich in
Pulseview z.B.)

PIN und PIN Eingabe

● Die gesendeten Daten enthalten folgenden
String:

..
SECRET~1
ECRET~1SWP
5777D <= Das ist die erzeugte
. und auf dem Flash
 gespeicherte PIN.

Challenge: Versteckte Funktion

● Der Jumper Header zeigt bisher beim Überbrücken mit z.B. einem Kabel vom Logik-
Analyse keine Reaktion.

● Gibt es einen Weg, um darüber in Kombination mit einer weiteren Aktion eine versteckte
Funktion auszulösen?

● Hint: Manchmal muss man in die Extreme gehen – kein Feuerzeug, Lötkolben,
Gummihammer usw. ;-)

Analyse Versteckte Funktion
● Sobald der Jumper Header gebrückt ist und der Lichtsensor mit einer sehr hellen Lichtqueller (Smartphone

Blitz-LED z.B.) steigt der Lichtsensor-Wert auf das Maximum von 4095 und eine versteckte Funktion wird
aktiviert:

Entering hidden REPL prompt (micropython console)…

You have found the correct switch usage and identifyed to flash the light
sensor, to enable this hiddin function.

Congratz: You have solved the Hidden-Function Challange :-)

You will get an REPL console.
For restart, just press the reset button of the ESP32 Wroom Shield.

Enhanced Challange:
Try to enable the RX-Data Pin for getting complete REPL access!
Hint: Maybe you need a third "hand" and need to ask for aditional stuff ;-)

Weitere Challenges

● RX-Data ist nicht mit der Seriellen Konsole verbunden; daher kann die Micropython REPL
nicht direkt genutzt werden.

Challenge: Finden Sie einen Weg, RX-Date für die Eingabe von Befehlen in der REPL
Eingabe nutzen zu können

– Welche zusätzlichen Probleme im Code können Sie mit dem Konsolen-Zugriff noch
identifizieren?

● Beim Starten des Anwendung existiert eine Race-Condition mit der das Programm zum
Absturz gebracht werden kann und in einem undefinierten Zustand gelangt.

Challenge: Finden Sie den Race-Condition – wie kann man diese mit Hilfe der Konsolen-
Ausgabe und dem SPI Mitschnitt zeitlich eingrenzen?

Challenge RX-Data und Konsolenzugriff

● Aufgrund des ESP32-Shield Design ist der Zugriff auf die Serielle Konsolen RX-Data Line
einfach möglich. Der Pin mit der Bezeichnung RX muss einfach mit TX des USB-TTY
Adapters verbunden werden.

● Sobald Sie der RX-Line
nutzen können, kann das
laufende Programm
jederzeit mit CTRL-C
abgebrochen werden!
Sie erhalten so auch
Zugriff auf die REPL

Challenge Race-Condition (1)

● In der Konsole kann beim Starten eine kleine
Verzögerung zwischen den beiden Ausgaben

Init Flash done…
Start programm

beobachtet werden.

● Im SPI Mitschnitt kann diese Stelle auch
erkannt werden, da hier eine Verzögerung
von 500ms zwischen den Auslesen der Start-
Nachricht und dem anlegen der Log-Daten
zu erkennen ist.

Challenge Race-Condition (2)

● Diese Verzögerung von 500ms könnte
auf ein „Warten“ auf den Flash-Speicher
etc. sein.

● Durch gezieltes ziehen eines Jumpers im
SPI-Block innerhalb dieser Verzögerung,
wird eine nicht abgefangene Exception
erzeugt, die das Programm zum
abstürzen bringt. Der Micropyhton
Interpreter befindet sich dann in einem
undefinierten Zustand.

Only DEMO
Hidden-Functions...

Weitere Hidden-Functions - DEMO

● Beim BMP180 können die Temperatur-Extreme dazu genutzt werden, zwei
unterschiedlichen versteckte Funktionen aufzurufen.

● Bei der Durchführung muss man sehr vorsichtig vorgehen – es könnte dabei kaputt gehen!

● Extreme Hitze über 80°C startet eine versteckter Funktion.

● Extreme Kälte unter -30°C startet ebenfalls eine versteckter Funktion.

– Da der BMP180 Sensor eine kleine Öffnung für die Luftdruckmessung besitzt, fällt der
Sensor nach dem Einfrieren eine Weile aus, bis das sich gebildete Kondenswasser
aus dem Sensor entwichen ist.

Fragen? Diskussion?

Wo finde ich mehr dazu?

● Details zur Hardware, Sourcecode, mehr Doku, Übungen usw:

– https://gitfoo.0x17sec.de/DHBW-Stuff/hw-hacking-101

– Alles (soweit möglich) ist unter GPL und CC veröffentlicht

● Oder eMail an mich ;-)

– chris@aucmail.de

● Link zu den Slides

– https://gitfoo.0x17sec.de/DHBW-Stuff/hw-hacking-101/src/branch/main/
Hardware_Hacking_Board_Vorstellung_DE.pdf

	Folie 1
	Folie 2
	Basics
	Folie 4
	Folie 5
	Gummihammer
	Dremel / Mini-Flex / Puk-Säge
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	UART auf Platinen / Embedded Geräten_clipboard0
	UART auf Platinen / Embedded Geräten
	Messung der Spannung mit Multimeter
	Analyse des Signals mit Oszilloskop
	Analyse des Signals mit Logic-Analyser
	Folie 21
	Folie 22
	Folie 23
	Folie 24
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	Folie 29
	Folie 30
	Folie 31
	Folie 32
	Folie 33
	Folie 34
	Folie 35
	Folie 36
	Folie 37
	Folie 38
	Fragen? Diskussion?
	Folie 40
	Folie 41
	Folie 42

